Electrically driven reversible insulator-metal phase transition in 1T-TaS2.
نویسندگان
چکیده
In this work, we demonstrate abrupt, reversible switching of resistance in 1T-TaS2 using dc and pulsed sources, corresponding to an insulator-metal transition between the insulating Mott and equilibrium metallic states. This transition occurs at a constant critical resistivity of 7 mohm-cm regardless of temperature or bias conditions and the transition time is significantly smaller than abrupt transitions by avalanche breakdown in other small gap Mott insulating materials. Furthermore, this critical resistivity corresponds to a carrier density of 4.5 × 10(19) cm(-3), which compares well with the critical carrier density for the commensurate to nearly commensurate charge density wave transition. These results suggest that the transition is facilitated by a carrier driven collapse of the Mott gap in 1T-TaS2, which results in fast (3 ns) switching.
منابع مشابه
Two-Dimensional Oscillatory Neural Network Based on Charge-Density-Wave Devices Operating at Room Temperature
We propose an oscillatory neural network implemented with twodimensional tantalum disulfide devices operating in the change density wave regime at room temperature. An elementary cell of the network consists of two 1T-TaS2 devices connected in series. Such a cell has constant output and oscillatory states. All cells have the same bias voltage. There is constant current flowing through the cell ...
متن کاملAtomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2).
Charge-density waves (CDWs) and their concomitant periodic lattice distortions (PLDs) govern the electronic properties in several layered transition-metal dichalcogenides. In particular, 1T-TaS2 undergoes a metal-to-insulator phase transition as the PLD becomes commensurate with the crystal lattice. Here we directly image PLDs of the nearly commensurate (NC) and commensurate (C) phases in thin,...
متن کاملFemtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy
Photoexcitation of the Mott insulator 1T-TaS2 by an intense laser pulse leads to an ultrafast transition toward a gapless phase. Besides the collapse of the electronic gap, the sudden excitation of the charge density wave (CDW) mode results in periodic oscillations of the electronic states. We employ time resolved photoelectron spectroscopy to monitor the rich dynamics of electrons and phonons ...
متن کاملA charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature.
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW sy...
متن کاملUltrafast melting of a charge-density wave in the Mott insulator 1T-TaS2.
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics of the charge-density wave in the Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2015